home *** CD-ROM | disk | FTP | other *** search
- #ifndef lint
- static char *RCSid = "$Id: contour.c,v 1.31 1998/04/14 00:15:15 drd Exp $";
- #endif
-
- /* GNUPLOT - contour.c */
-
- /*[
- * Copyright 1986 - 1993, 1998 Thomas Williams, Colin Kelley
- *
- * Permission to use, copy, and distribute this software and its
- * documentation for any purpose with or without fee is hereby granted,
- * provided that the above copyright notice appear in all copies and
- * that both that copyright notice and this permission notice appear
- * in supporting documentation.
- *
- * Permission to modify the software is granted, but not the right to
- * distribute the complete modified source code. Modifications are to
- * be distributed as patches to the released version. Permission to
- * distribute binaries produced by compiling modified sources is granted,
- * provided you
- * 1. distribute the corresponding source modifications from the
- * released version in the form of a patch file along with the binaries,
- * 2. add special version identification to distinguish your version
- * in addition to the base release version number,
- * 3. provide your name and address as the primary contact for the
- * support of your modified version, and
- * 4. retain our contact information in regard to use of the base
- * software.
- * Permission to distribute the released version of the source code along
- * with corresponding source modifications in the form of a patch file is
- * granted with same provisions 2 through 4 for binary distributions.
- *
- * This software is provided "as is" without express or implied warranty
- * to the extent permitted by applicable law.
- ]*/
-
-
- /*
- * AUTHORS
- *
- * Original Software:
- * Gershon Elber
- *
- * Improvements to the numerical algorithms:
- * Hans-Martin Keller, 1995,1997 (hkeller@gwdg.de)
- *
- */
-
- #include "plot.h"
- #include "setshow.h"
-
- #define DEFAULT_NUM_APPROX_PTS 5
- #define DEFAULT_BSPLINE_ORDER 3
- #define MAX_NUM_APPROX_PTS 100
- #define MAX_BSPLINE_ORDER 10 /* ?? Not used ?? */
-
- /* for some reason these symbols are also defined in plot.h under different */
- /* names */
- #define INTERP_NOTHING CONTOUR_KIND_LINEAR /* Kind of interpolations on contours. */
- #define INTERP_CUBIC CONTOUR_KIND_CUBIC_SPL /* Cubic spline interp. */
- #define APPROX_BSPLINE CONTOUR_KIND_BSPLINE /* Bspline interpolation. */
-
- #define ACTIVE 1 /* Status of edges at certain Z level. */
- #define INACTIVE 2
- #define INNER_MESH 1 /* position of edge in mesh */
- #define BOUNDARY 2
- #define DIAGONAL 3
-
- #define OPEN_CONTOUR 1 /* Contour kinds. */
- #define CLOSED_CONTOUR 2
-
- #define EPSILON 1e-5 /* Used to decide if two float are equal. */
-
- #ifndef TRUE
- #define TRUE -1
- #define FALSE 0
- #endif
-
- #define MAX_POINTS_PER_CNTR 100
-
- #define ABS(x) ((x) > 0 ? (x) : (-(x)))
- #define SQR(x) ((x) * (x))
-
- /*
- * struct vrtx_struct {
- * double X, Y, Z;
- * struct vrtx_struct *next;
- * };
- *
- * replaced by 'struct coordinate GPHUGE ', see plot.h (HMK 1997)
- */
-
- struct edge_struct {
- struct poly_struct *poly[2]; /* Each edge belongs to up to 2 polygons */
- struct coordinate GPHUGE *vertex[2]; /* The two extreme points of this edge. */
- struct edge_struct *next; /* To chain lists */
- int status, /* Status flag to mark edges in scanning at certain Z level. */
- position; /* position in mesh: INNER_MESH, BOUNDARY or DIAGONNAL. */
- };
-
- struct poly_struct {
- struct edge_struct *edge[3]; /* As we do triangolation here... */
- struct poly_struct *next; /* To chain lists. */
- };
-
- struct cntr_struct { /* Contours are saved using this struct list. */
- double X, Y; /* The coordinates of this vertex. */
- struct cntr_struct *next; /* To chain lists. */
- };
-
- static struct gnuplot_contours *contour_list = NULL;
- static double crnt_cntr[MAX_POINTS_PER_CNTR * 2];
- static int crnt_cntr_pt_index = 0;
- static double contour_level = 0.0;
- static int num_approx_pts = DEFAULT_NUM_APPROX_PTS; /* # pts per approx/inter. */
- static int bspline_order = DEFAULT_BSPLINE_ORDER; /* Bspline order to use. */
- static int interp_kind = INTERP_NOTHING; /* Linear, Cubic interp., Bspline. */
- static double x_min, y_min, z_min; /* Minimum values of x, y, and z */
- static double x_max, y_max, z_max; /* Maximum values of x, y, and z */
-
- static void add_cntr_point __PROTO((double x, double y));
- static void end_crnt_cntr __PROTO((void));
- static void gen_contours __PROTO((struct edge_struct * p_edges, double z_level,
- double xx_min, double xx_max, double yy_min, double yy_max));
- static int update_all_edges __PROTO((struct edge_struct * p_edges,
- double z_level));
- static struct cntr_struct *gen_one_contour __PROTO((
- struct edge_struct * p_edges, double z_level, int *contr_kind,
- int *num_active));
- static struct cntr_struct *trace_contour __PROTO((
- struct edge_struct * pe_start, double z_level, int *num_active,
- int contr_kind));
- static struct cntr_struct *update_cntr_pt __PROTO((struct edge_struct * p_edge,
- double z_level));
- static int fuzzy_equal __PROTO((struct cntr_struct * p_cntr1,
- struct cntr_struct * p_cntr2));
-
-
- static void gen_triangle __PROTO((int num_isolines,
- struct iso_curve * iso_lines, struct poly_struct ** p_polys,
- struct edge_struct ** p_edges));
- static void calc_min_max __PROTO((int num_isolines,
- struct iso_curve * iso_lines, double *xx_min, double *yy_min, double *zz_min,
- double *xx_max, double *yy_max, double *zz_max));
- static struct edge_struct *add_edge __PROTO((struct coordinate GPHUGE * point0,
- struct coordinate GPHUGE * point1, struct edge_struct ** p_edge,
- struct edge_struct ** pe_tail));
- static struct poly_struct *add_poly __PROTO((struct edge_struct * edge0,
- struct edge_struct * edge1, struct edge_struct * edge2,
- struct poly_struct ** p_poly, struct poly_struct ** pp_tail));
-
-
- static void put_contour __PROTO((struct cntr_struct * p_cntr, double z_level,
- double xx_min, double xx_max, double yy_min, double yy_max,
- int contr_kind));
- static void put_contour_nothing __PROTO((struct cntr_struct * p_cntr));
- static int chk_contour_kind __PROTO((struct cntr_struct * p_cntr,
- int contr_kind));
- static void put_contour_cubic __PROTO((struct cntr_struct * p_cntr,
- double z_level, double xx_min, double xx_max, double yy_min, double yy_max,
- int contr_kind));
- static void put_contour_bspline __PROTO((struct cntr_struct * p_cntr,
- double z_level, double xx_min, double xx_max, double yy_min, double yy_max,
- int contr_kind));
- static void free_contour __PROTO((struct cntr_struct * p_cntr));
- static int count_contour __PROTO((struct cntr_struct * p_cntr));
- static int gen_cubic_spline __PROTO((int num_pts, struct cntr_struct * p_cntr,
- double d2x[], double d2y[], double delta_t[], int contr_kind,
- double unit_x, double unit_y));
- static void intp_cubic_spline __PROTO((int n, struct cntr_struct * p_cntr,
- double d2x[], double d2y[], double delta_t[], int n_intpol));
- static int solve_cubic_1 __PROTO((tri_diag m[], int n));
- static void solve_cubic_2 __PROTO((tri_diag m[], double x[], int n));
- /*
- * static int solve_tri_diag __PROTO((tri_diag m[], double r[], double x[],
- * int n)); see "protos.h"
- */
- static void gen_bspline_approx __PROTO((struct cntr_struct * p_cntr,
- int num_of_points, int order, int contr_kind));
- static void eval_bspline __PROTO((double t, struct cntr_struct * p_cntr,
- int num_of_points, int order, int j, int contr_kind, double *x,
- double *y));
- static double fetch_knot __PROTO((int contr_kind, int num_of_points,
- int order, int i));
-
- /*
- * Entry routine to this whole set of contouring module.
- */
- struct gnuplot_contours *contour(num_isolines, iso_lines, ZLevels, approx_pts, int_kind, order1, contour_levels_kind, cont_levels_list)
- int num_isolines;
- struct iso_curve *iso_lines;
- int ZLevels, approx_pts, int_kind, order1, contour_levels_kind;
- double *cont_levels_list;
- {
- int i;
- int num_of_z_levels; /* # Z contour levels. */
- struct poly_struct *p_polys, *p_poly;
- struct edge_struct *p_edges, *p_edge;
- double z = 0, dz = 0;
- struct gnuplot_contours *save_contour_list;
-
- num_of_z_levels = ZLevels;
- num_approx_pts = approx_pts;
- bspline_order = order1 - 1;
- interp_kind = int_kind;
-
- contour_list = NULL;
-
- /*
- * Calculate min/max values :
- */
- calc_min_max(num_isolines, iso_lines,
- &x_min, &y_min, &z_min, &x_max, &y_max, &z_max);
-
- /*
- * Generate list of edges (p_edges) and list of triangles (p_polys):
- */
- gen_triangle(num_isolines, iso_lines, &p_polys, &p_edges);
- crnt_cntr_pt_index = 0;
-
- if (contour_levels_kind == LEVELS_AUTO) {
- dz = fabs(z_max - z_min);
- if (dz == 0)
- return NULL; /* empty z range ? */
- dz = set_tic(log10(dz), ((int) ZLevels + 1) * 2);
- z = floor(z_min / dz) * dz;
- num_of_z_levels = (int) floor((z_max - z) / dz);
- }
- for (i = 0; i < num_of_z_levels; i++) {
- switch (contour_levels_kind) {
- case LEVELS_AUTO:
- z += dz;
- break;
- case LEVELS_INCREMENTAL:
- z = cont_levels_list[0] + i * cont_levels_list[1];
- break;
- case LEVELS_DISCRETE:
- z = is_log_z ? log(cont_levels_list[i]) / log_base_log_z : cont_levels_list[i];
- break;
- }
- contour_level = z;
- save_contour_list = contour_list;
- gen_contours(p_edges, z, x_min, x_max, y_min, y_max);
- if (contour_list != save_contour_list) {
- contour_list->isNewLevel = 1;
- sprintf(contour_list->label, contour_format, is_log_z ? pow(base_log_z, z) : z);
- }
- }
-
- /* Free all contouring related temporary data. */
- while (p_polys) {
- p_poly = p_polys->next;
- free(p_polys);
- p_polys = p_poly;
- }
- while (p_edges) {
- p_edge = p_edges->next;
- free(p_edges);
- p_edges = p_edge;
- }
-
- return contour_list;
- }
-
- /*
- * Adds another point to the currently build contour.
- */
- static void add_cntr_point(x, y)
- double x, y;
- {
- int index;
-
- if (crnt_cntr_pt_index >= MAX_POINTS_PER_CNTR - 1) {
- index = crnt_cntr_pt_index - 1;
- end_crnt_cntr();
- crnt_cntr[0] = crnt_cntr[index * 2];
- crnt_cntr[1] = crnt_cntr[index * 2 + 1];
- crnt_cntr_pt_index = 1; /* Keep the last point as first of this one. */
- }
- crnt_cntr[crnt_cntr_pt_index * 2] = x;
- crnt_cntr[crnt_cntr_pt_index * 2 + 1] = y;
- crnt_cntr_pt_index++;
- }
-
- /*
- * Done with current contour - create gnuplot data structure for it.
- */
- static void end_crnt_cntr()
- {
- int i;
- struct gnuplot_contours *cntr = (struct gnuplot_contours *)
- gp_alloc((unsigned long) sizeof(struct gnuplot_contours), "gnuplot_contour");
- cntr->coords = (struct coordinate GPHUGE *)
- gp_alloc((unsigned long) sizeof(struct coordinate)
- * (unsigned long) crnt_cntr_pt_index, "contour coords");
-
- for (i = 0; i < crnt_cntr_pt_index; i++) {
- cntr->coords[i].x = crnt_cntr[i * 2];
- cntr->coords[i].y = crnt_cntr[i * 2 + 1];
- cntr->coords[i].z = contour_level;
- }
- cntr->num_pts = crnt_cntr_pt_index;
-
- cntr->next = contour_list;
- contour_list = cntr;
- contour_list->isNewLevel = 0;
-
- crnt_cntr_pt_index = 0;
- }
-
- /*
- * Generates all contours by tracing the intersecting triangles.
- */
- static void gen_contours(p_edges, z_level, xx_min, xx_max, yy_min, yy_max)
- struct edge_struct *p_edges;
- double z_level, xx_min, xx_max, yy_min, yy_max;
- {
- int num_active, /* Number of edges marked ACTIVE. */
- contr_kind; /* One of OPEN_CONTOUR, CLOSED_CONTOUR. */
- struct cntr_struct *p_cntr;
-
- num_active = update_all_edges(p_edges, z_level); /* Do pass 1. */
-
- contr_kind = OPEN_CONTOUR; /* Start to look for contour on boundaries. */
-
- while (num_active > 0) { /* Do Pass 2. */
- /* Generate One contour (and update MumActive as needed): */
- p_cntr = gen_one_contour(p_edges, z_level, &contr_kind, &num_active);
- /* Emit it in requested format: */
- put_contour(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_kind);
- }
- }
-
- /*
- * Does pass 1, or marks the edges which are active (crosses this z_level)
- * as ACTIVE, and the others as INACTIVE:
- * Returns number of active edges (marked ACTIVE).
- */
- static int update_all_edges(p_edges, z_level)
- struct edge_struct *p_edges;
- double z_level;
- {
- int count = 0;
-
- while (p_edges) {
- /* use the same test at both vertices to avoid roundoff errors */
- if ((p_edges->vertex[0]->z >= z_level) !=
- (p_edges->vertex[1]->z >= z_level)) {
- p_edges->status = ACTIVE;
- count++;
- } else
- p_edges->status = INACTIVE;
- p_edges = p_edges->next;
- }
-
- return count;
- }
-
- /*
- * Does pass 2, or find one complete contour out of the triangulation
- * data base:
- * Returns a pointer to the contour (as linked list), contr_kind is set to
- * one of OPEN_CONTOUR, CLOSED_CONTOUR, and num_active is updated.
- */
- static struct cntr_struct *gen_one_contour(p_edges, z_level, contr_kind, num_active)
- struct edge_struct *p_edges; /* list of edges input */
- double z_level; /* Z level of contour input */
- int *contr_kind; /* OPEN_ or CLOESED_CONTOUR in/out */
- int *num_active; /* number of active edges in/out */
- {
- struct edge_struct *pe_temp;
-
- if (*contr_kind == OPEN_CONTOUR) {
- /* Look for something to start with on boundary: */
- pe_temp = p_edges;
- while (pe_temp) {
- if ((pe_temp->status == ACTIVE) && (pe_temp->position == BOUNDARY))
- break;
- pe_temp = pe_temp->next;
- }
- if (!pe_temp)
- *contr_kind = CLOSED_CONTOUR; /* No more contours on boundary. */
- else {
- return trace_contour(pe_temp, z_level, num_active, *contr_kind);
- }
- }
- if (*contr_kind == CLOSED_CONTOUR) {
- /* Look for something to start with inside: */
- pe_temp = p_edges;
- while (pe_temp) {
- if ((pe_temp->status == ACTIVE) && (!(pe_temp->position == BOUNDARY)))
- break;
- pe_temp = pe_temp->next;
- }
- if (!pe_temp) {
- *num_active = 0;
- fprintf(stderr, "gen_one_contour: no contour found\n");
- return NULL;
- } else {
- *contr_kind = CLOSED_CONTOUR;
- return trace_contour(pe_temp, z_level, num_active, *contr_kind);
- }
- }
- return NULL; /* We should never be here, but lint... */
- }
-
- /*
- * Search the data base along a contour starts at the edge pe_start until
- * a boundary edge is detected or until we close the loop back to pe_start.
- * Returns a linked list of all the points on the contour
- * Also decreases num_active by the number of points on contour.
- */
- static struct cntr_struct *trace_contour(pe_start, z_level, num_active, contr_kind)
- struct edge_struct *pe_start; /* edge to start contour input */
- double z_level; /* Z level of contour input */
- int *num_active; /* number of active edges in/out */
- int contr_kind; /* OPEN_ or CLOESED_CONTOUR input */
- {
- struct cntr_struct *p_cntr, *pc_tail;
- struct edge_struct *p_edge, *p_next_edge;
- struct poly_struct *p_poly, *PLastpoly = NULL;
- int i;
-
- p_edge = pe_start; /* first edge to start contour */
-
- /* Generate the header of the contour - the point on pe_start. */
- if (contr_kind == OPEN_CONTOUR) {
- pe_start->status = INACTIVE;
- (*num_active)--;
- }
- if (p_edge->poly[0] || p_edge->poly[1]) { /* more than one point */
-
- p_cntr = pc_tail = update_cntr_pt(pe_start, z_level); /* first point */
-
- do {
- /* Find polygon to continue (Not where we came from - PLastpoly): */
- if (p_edge->poly[0] == PLastpoly)
- p_poly = p_edge->poly[1];
- else
- p_poly = p_edge->poly[0];
- p_next_edge = NULL; /* In case of error, remains NULL. */
- for (i = 0; i < 3; i++) /* Test the 3 edges of the polygon: */
- if (p_poly->edge[i] != p_edge)
- if (p_poly->edge[i]->status == ACTIVE)
- p_next_edge = p_poly->edge[i];
- if (!p_next_edge) { /* Error exit */
- pc_tail->next = NULL;
- free_contour(p_cntr);
- fprintf(stderr, "trace_contour: unexpected end of contour\n");
- return NULL;
- }
- p_edge = p_next_edge;
- PLastpoly = p_poly;
- p_edge->status = INACTIVE;
- (*num_active)--;
-
- /* Do not allocate contour points on diagonal edges */
- if (p_edge->position != DIAGONAL) {
-
- pc_tail->next = update_cntr_pt(p_edge, z_level);
-
- /* Remove nearby points */
- if (fuzzy_equal(pc_tail, pc_tail->next)) {
-
- free((char *) pc_tail->next);
- } else
- pc_tail = pc_tail->next;
- }
- } while ((p_edge != pe_start) && (p_edge->position != BOUNDARY));
-
- pc_tail->next = NULL;
-
- /* For CLOSED_CONTOUR the first and last point should be equal */
- if (pe_start == p_edge) {
- (p_cntr->X) = (pc_tail->X);
- (p_cntr->Y) = (pc_tail->Y);
- }
- } else { /* only one point, forget it */
- p_cntr = NULL;
- }
-
- return p_cntr;
- }
-
- /*
- * Allocates one contour location and update it to to correct position
- * according to z_level and edge p_edge.
- */
- static struct cntr_struct *update_cntr_pt(p_edge, z_level)
- struct edge_struct *p_edge;
- double z_level;
- {
- double t;
- struct cntr_struct *p_cntr;
-
- t = (z_level - p_edge->vertex[0]->z) /
- (p_edge->vertex[1]->z - p_edge->vertex[0]->z);
-
- /* test if t is out of interval [0:1] (should not happen but who knows ...) */
- t = (t < 0.0 ? 0.0 : t);
- t = (t > 1.0 ? 1.0 : t);
-
- p_cntr = (struct cntr_struct *)
- gp_alloc((unsigned long) sizeof(struct cntr_struct), "contour cntr_struct");
-
- p_cntr->X = p_edge->vertex[1]->x * t +
- p_edge->vertex[0]->x * (1 - t);
- p_cntr->Y = p_edge->vertex[1]->y * t +
- p_edge->vertex[0]->y * (1 - t);
- return p_cntr;
- }
-
- /*
- * Simple routine to decide if two contour points are equal by
- * calculating the relative error (< EPSILON).
- */
- static int fuzzy_equal(p_cntr1, p_cntr2)
- struct cntr_struct *p_cntr1, *p_cntr2;
- {
- double unit_x, unit_y;
- unit_x = ABS(x_max - x_min) + zero; /* reference */
- unit_y = ABS(y_max - y_min) + zero;
- return (
- ABS(p_cntr1->X - p_cntr2->X) / unit_x < EPSILON &&
- ABS(p_cntr1->Y - p_cntr2->Y) / unit_y < EPSILON);
- }
-
- /*
- * Generate the triangles.
- * Returns the lists (edges & polys) via pointers to their heads.
- */
- static void gen_triangle(num_isolines, iso_lines, p_polys, p_edges)
- int num_isolines; /* number of iso-lines input */
- struct iso_curve *iso_lines; /* iso-lines input */
- struct poly_struct **p_polys; /* list of polygons output */
- struct edge_struct **p_edges; /* list of edges output */
- {
- int i, j, grid_x_max = iso_lines->p_count;
- struct edge_struct *p_edge1, *p_edge2, *edge0, *edge1, *edge2, *pe_tail,
- *pe_tail1, *pe_tail2, *pe_temp;
- struct poly_struct *pp_tail, *lower_tri, *upper_tri;
- struct coordinate GPHUGE *p_vrtx1, GPHUGE * p_vrtx2; /* HBB 980308: need to tag *each* of them as GPHUGE! */
-
- (*p_polys) = pp_tail = NULL; /* clear lists */
- (*p_edges) = pe_tail = NULL;
-
- p_vrtx1 = iso_lines->points; /* first row of vertices */
- p_edge1 = pe_tail1 = NULL; /* clear list of edges */
-
- /* Generate edges of first row */
- for (j = 0; j < grid_x_max - 1; j++)
- add_edge(p_vrtx1 + j, p_vrtx1 + j + 1, &p_edge1, &pe_tail1);
-
- (*p_edges) = p_edge1; /* update main list */
- pe_tail = pe_tail1;
-
-
- /*
- * Combines vertices to edges and edges to triangles:
- * ==================================================
- * The edges are stored in the edge list, referenced by p_edges
- * (pe_tail points on last edge).
- *
- * Temporary pointers:
- * 1. p_edge2: Top horizontal edge list: ----------------------- 2
- * 2. pe_tail: middle edge list: |\ |\ |\ |\ |\ |\ |
- * | \| \| \| \| \| \|
- * 3. p_edge1: Bottom horizontal edge list: ----------------------- 1
- *
- * The routine generates two triangle Lower Upper 1
- * upper one and lower one: | \ ----
- * (Nums. are edges order in polys) 0| \1 0\ |2
- * The polygons are stored in the polygon ---- \ |
- * list (*p_polys) (pp_tail points on 2
- * last polygon).
- * 1
- * -----------
- * In addition, the edge lists are updated - | \ 0 |
- * each edge has two pointers on the two | \ |
- * (one active if boundary) polygons which 0|1 0\1 0|1
- * uses it. These two pointer to polygons | \ |
- * are named: poly[0], poly[1]. The diagram | 1 \ |
- * on the right show how they are used for the -----------
- * upper and lower polygons (INNER_MESH polygons only). 0
- */
-
- for (i = 1; i < num_isolines; i++) {
- /* Read next column and gen. polys. */
- iso_lines = iso_lines->next;
-
- p_vrtx2 = iso_lines->points; /* next row of vertices */
- p_edge2 = pe_tail2 = NULL; /* clear top horizontal list */
- pe_temp = p_edge1; /* pointer in bottom list */
-
- /*
- * Generate edges and triagles for next row:
- */
-
- /* generate first vertical edge */
- edge2 = add_edge(p_vrtx1, p_vrtx2, p_edges, &pe_tail);
-
- for (j = 0; j < grid_x_max - 1; j++) {
-
- /* copy vertical edge for lower triangle */
- edge0 = edge2;
-
- if (pe_temp && pe_temp->vertex[0] == p_vrtx1 + j) {
- /* test lower edge */
- edge2 = pe_temp;
- pe_temp = pe_temp->next;
- } else {
- edge2 = NULL; /* edge is undefined */
- }
-
- /* generate diagonal edge */
- edge1 = add_edge(p_vrtx1 + j + 1, p_vrtx2 + j, p_edges, &pe_tail);
- if (edge1)
- edge1->position = DIAGONAL;
-
- /* generate lower triangle */
- lower_tri = add_poly(edge0, edge1, edge2, p_polys, &pp_tail);
-
- /* copy diagonal edge for upper triangle */
- edge0 = edge1;
-
- /* generate upper edge */
- edge1 = add_edge(p_vrtx2 + j, p_vrtx2 + j + 1, &p_edge2, &pe_tail2);
-
- /* generate vertical edge */
- edge2 = add_edge(p_vrtx1 + j + 1, p_vrtx2 + j + 1, p_edges, &pe_tail);
-
- /* generate upper triangle */
- upper_tri = add_poly(edge0, edge1, edge2, p_polys, &pp_tail);
- }
-
- if ((*p_edges)) { /* Chain new edges to main list. */
- pe_tail->next = p_edge2;
- pe_tail = pe_tail2;
- } else {
- (*p_edges) = p_edge2;
- pe_tail = pe_tail2;
- }
-
- p_edge1 = p_edge2;
- p_vrtx1 = p_vrtx2;
- }
-
- /* Update the boundary flag, saved in each edge, and update indexes: */
-
- pe_temp = (*p_edges);
-
- while (pe_temp) {
- if ((!(pe_temp->poly[0])) || (!(pe_temp->poly[1])))
- (pe_temp->position) = BOUNDARY;
- pe_temp = pe_temp->next;
- }
- }
-
- /*
- * Calculate minimum and maximum values
- */
- static void calc_min_max(num_isolines, iso_lines, xx_min, yy_min, zz_min, xx_max, yy_max, zz_max)
- int num_isolines; /* number of iso-lines input */
- struct iso_curve *iso_lines; /* iso-lines input */
- double *xx_min, *yy_min, *zz_min, *xx_max, *yy_max, *zz_max; /* min/max values in/out */
- {
- int i, j, grid_x_max;
- struct coordinate GPHUGE *vertex;
-
- grid_x_max = iso_lines->p_count; /* number of vertices per iso_line */
-
- (*xx_min) = (*yy_min) = (*zz_min) = VERYLARGE; /* clear min/max values */
- (*xx_max) = (*yy_max) = (*zz_max) = -VERYLARGE;
-
- for (j = 0; j < num_isolines; j++) {
-
- vertex = iso_lines->points;
-
- for (i = 0; i < grid_x_max; i++) {
- if (vertex[i].type != UNDEFINED) {
- if (vertex[i].x > (*xx_max))
- (*xx_max) = vertex[i].x;
- if (vertex[i].y > (*yy_max))
- (*yy_max) = vertex[i].y;
- if (vertex[i].z > (*zz_max))
- (*zz_max) = vertex[i].z;
- if (vertex[i].x < (*xx_min))
- (*xx_min) = vertex[i].x;
- if (vertex[i].y < (*yy_min))
- (*yy_min) = vertex[i].y;
- if (vertex[i].z < (*zz_min))
- (*zz_min) = vertex[i].z;
- }
- }
- iso_lines = iso_lines->next;
- }
- /*
- * fprintf(stderr," x: %g, %g\n", (*xx_min), (*xx_max));
- * fprintf(stderr," y: %g, %g\n", (*yy_min), (*yy_max));
- * fprintf(stderr," z: %g, %g\n", (*zz_min), (*zz_max));
- */
- }
-
- /*
- * Generate new edge and append it to list, but only if both vertices are
- * defined. The list is referenced by p_edge and pe_tail (p_edge points on
- * first edge and pe_tail on last one).
- * Note, the list may be empty (pe_edge==pe_tail==NULL) on entry and exit.
- */
- static struct edge_struct *add_edge(point0, point1, p_edge, pe_tail)
- struct coordinate GPHUGE * point0; /* 2 vertices input */
- struct coordinate GPHUGE * point1;
- struct edge_struct **p_edge, **pe_tail; /* pointers to edge list in/out */
- {
- struct edge_struct *pe_temp = NULL;
-
- if (point0->type != UNDEFINED && point1->type != UNDEFINED) {
-
- pe_temp = (struct edge_struct *)
- gp_alloc((unsigned long) sizeof(struct edge_struct), "contour edge");
-
- pe_temp->poly[0] = NULL; /* clear links */
- pe_temp->poly[1] = NULL;
- pe_temp->vertex[0] = point0; /* First vertex of edge. */
- pe_temp->vertex[1] = point1; /* Second vertex of edge. */
- pe_temp->next = NULL;
- pe_temp->position = INNER_MESH; /* default position in mesh */
-
- if ((*pe_tail)) {
- (*pe_tail)->next = pe_temp; /* Stick new record as last one. */
- } else {
- (*p_edge) = pe_temp; /* start new list if empty */
- }
- (*pe_tail) = pe_temp; /* continue to last record. */
-
- }
- return pe_temp; /* returns NULL, if no edge allocated */
- }
-
- /*
- * Generate new triangle and append it to list, but only if all edges are defined.
- * The list is referenced by p_poly and pp_tail (p_poly points on first ploygon
- * and pp_tail on last one).
- * Note, the list may be empty (pe_ploy==pp_tail==NULL) on entry and exit.
- */
- static struct poly_struct *add_poly(edge0, edge1, edge2, p_poly, pp_tail)
- struct edge_struct *edge0, *edge1, *edge2; /* 3 edges input */
- struct poly_struct **p_poly, **pp_tail; /* pointers to polygon list in/out */
- {
- struct poly_struct *pp_temp = NULL;
-
- if (edge0 && edge1 && edge2) {
-
- pp_temp = (struct poly_struct *)
- gp_alloc((unsigned long) sizeof(struct poly_struct), "contour polygon");
-
- pp_temp->edge[0] = edge0; /* First edge of triangle */
- pp_temp->edge[1] = edge1; /* Second one */
- pp_temp->edge[2] = edge2; /* Third one */
- pp_temp->next = NULL;
-
- if (edge0->poly[0]) /* update edge0 */
- edge0->poly[1] = pp_temp;
- else
- edge0->poly[0] = pp_temp;
-
- if (edge1->poly[0]) /* update edge1 */
- edge1->poly[1] = pp_temp;
- else
- edge1->poly[0] = pp_temp;
-
- if (edge2->poly[0]) /* update edge2 */
- edge2->poly[1] = pp_temp;
- else
- edge2->poly[0] = pp_temp;
-
- if ((*pp_tail)) /* Stick new record as last one. */
- (*pp_tail)->next = pp_temp;
- else
- (*p_poly) = pp_temp; /* start new list if empty */
-
- (*pp_tail) = pp_temp; /* continue to last record. */
-
- }
- return pp_temp; /* returns NULL, if no edge allocated */
- }
-
-
-
- /*
- * Calls the (hopefully) desired interpolation/approximation routine.
- */
- static void put_contour(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_kind)
- struct cntr_struct *p_cntr; /* contour structure input */
- double z_level, /* Z level of contour input */
- xx_min, xx_max, yy_min, yy_max; /* minimum/maximum values input */
- int contr_kind; /* OPEN_ or CLOESED_CONTOUR input */
- {
-
- if (!p_cntr)
- return; /* Nothing to do if it is empty contour. */
-
- switch (interp_kind) {
- case INTERP_NOTHING: /* No interpolation/approximation. */
- put_contour_nothing(p_cntr);
- break;
- case INTERP_CUBIC: /* Cubic spline interpolation. */
- put_contour_cubic(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max,
- chk_contour_kind(p_cntr, contr_kind));
-
- break;
- case APPROX_BSPLINE: /* Bspline approximation. */
- put_contour_bspline(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max,
- chk_contour_kind(p_cntr, contr_kind));
- break;
- }
- free_contour(p_cntr);
- }
-
- /*
- * Simply puts contour coordinates in order with no interpolation or
- * approximation.
- */
- static void put_contour_nothing(p_cntr)
- struct cntr_struct *p_cntr;
- {
- while (p_cntr) {
- add_cntr_point(p_cntr->X, p_cntr->Y);
- p_cntr = p_cntr->next;
- }
- end_crnt_cntr();
- }
-
- /*
- * for some reason contours are never flagged as CLOSED_CONTOUR
- * if first point == last point, set flag accordingly
- *
- */
-
- static int chk_contour_kind(p_cntr, contr_kind)
- struct cntr_struct *p_cntr;
- int contr_kind;
- {
- struct cntr_struct *pc_tail = NULL;
- int current_contr_kind;
-
- FPRINTF((stderr, "check_contour_kind: current contr_kind value is %d\n", contr_kind));
-
- current_contr_kind = contr_kind;
-
- if (contr_kind != CLOSED_CONTOUR) {
- pc_tail = p_cntr;
- while (pc_tail->next)
- pc_tail = pc_tail->next; /* Find last point. */
-
- /* test if first and last point are equal */
- if (fuzzy_equal(pc_tail, p_cntr)) {
- current_contr_kind = CLOSED_CONTOUR;
- FPRINTF((stderr, "check_contour_kind: contr_kind changed to %d\n", current_contr_kind));
- }
- }
- return (current_contr_kind);
- }
-
- /*
- * Generate a cubic spline curve through the points (x_i,y_i) which are
- * stored in the linked list p_cntr.
- * The spline is defined as a 2d-function s(t) = (x(t),y(t)), where the
- * parameter t is the length of the linear stroke.
- */
- static void put_contour_cubic(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_kind)
- struct cntr_struct *p_cntr;
- double z_level, xx_min, xx_max, yy_min, yy_max;
- int contr_kind;
- {
- int num_pts, num_intpol;
- double unit_x, unit_y; /* To define norm (x,y)-plane */
- double *delta_t; /* Interval length t_{i+1}-t_i */
- double *d2x, *d2y; /* Second derivatives x''(t_i), y''(t_i) */
- struct cntr_struct *pc_tail;
-
- num_pts = count_contour(p_cntr); /* Number of points in contour. */
-
- pc_tail = p_cntr; /* Find last point. */
- while (pc_tail->next)
- pc_tail = pc_tail->next;
-
- if (contr_kind == CLOSED_CONTOUR) {
- /* Test if first and last point are equal (should be) */
- if (!fuzzy_equal(pc_tail, p_cntr)) {
- pc_tail->next = p_cntr; /* Close contour list - make it circular. */
- num_pts++;
- }
- }
- delta_t = (double *)
- gp_alloc((unsigned long) (sizeof(double) * num_pts), "contour delta_t");
- d2x = (double *)
- gp_alloc((unsigned long) (sizeof(double) * num_pts), "contour d2x");
- d2y = (double *)
- gp_alloc((unsigned long) (sizeof(double) * num_pts), "contour d2y");
-
- /* Width and hight of the grid is used at unit length (2d-norm) */
- unit_x = xx_max - x_min;
- unit_y = yy_max - y_min;
- unit_x = (unit_x > zero ? unit_x : zero); /* should not be zero */
- unit_y = (unit_y > zero ? unit_y : zero);
-
- if (num_pts > 2) {
- /*
- * Calculate second derivatives d2x[], d2y[] and interval lengths delta_t[]:
- */
- if (!gen_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t,
- contr_kind, unit_x, unit_y)) {
- free((char *) delta_t);
- free((char *) d2x);
- free((char *) d2y);
- if (contr_kind == CLOSED_CONTOUR)
- pc_tail->next = NULL; /* Un-circular list */
- return;
- }
- }
- /* If following (num_pts > 1) is TRUE then exactly 2 points in contour. */
- else if (num_pts > 1) {
- /* set all second derivatives to zero, interval length to 1 */
- d2x[0] = 0.;
- d2y[0] = 0.;
- d2x[1] = 0.;
- d2y[1] = 0.;
- delta_t[0] = 1.;
- } else { /* Only one point ( ?? ) - ignore it. */
- free((char *) delta_t);
- free((char *) d2x);
- free((char *) d2y);
- if (contr_kind == CLOSED_CONTOUR)
- pc_tail->next = NULL; /* Un-circular list */
- return;
- }
-
- /* Calculate "num_intpol" interpolated values */
- num_intpol = 1 + (num_pts - 1) * num_approx_pts; /* global: num_approx_pts */
- intp_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t, num_intpol);
-
- free((char *) delta_t);
- free((char *) d2x);
- free((char *) d2y);
-
- if (contr_kind == CLOSED_CONTOUR)
- pc_tail->next = NULL; /* Un-circular list */
-
- end_crnt_cntr();
- }
-
-
- /*
- * Find Bspline approximation for this data set.
- * Uses global variable num_approx_pts to determine number of samples per
- * interval, where the knot vector intervals are assumed to be uniform, and
- * Global variable bspline_order for the order of Bspline to use.
- */
- static void put_contour_bspline(p_cntr, z_level, xx_min, xx_max, yy_min, yy_max, contr_kind)
- struct cntr_struct *p_cntr;
- double z_level, xx_min, xx_max, yy_min, yy_max;
- int contr_kind;
- {
- int num_pts, order = bspline_order;
-
- num_pts = count_contour(p_cntr); /* Number of points in contour. */
- if (num_pts < 2)
- return; /* Can't do nothing if empty or one points! */
- /* Order must be less than number of points in curve - fix it if needed. */
- if (order > num_pts - 1)
- order = num_pts - 1;
-
- gen_bspline_approx(p_cntr, num_pts, order, contr_kind);
- end_crnt_cntr();
- }
-
- /*
- * Free all elements in the contour list.
- */
- static void free_contour(p_cntr)
- struct cntr_struct *p_cntr;
- {
- struct cntr_struct *pc_temp;
-
- while (p_cntr) {
- pc_temp = p_cntr;
- p_cntr = p_cntr->next;
- free((char *) pc_temp);
- }
- }
-
- /*
- * Counts number of points in contour.
- */
- static int count_contour(p_cntr)
- struct cntr_struct *p_cntr;
- {
- int count = 0;
-
- while (p_cntr) {
- count++;
- p_cntr = p_cntr->next;
- }
- return count;
- }
-
- /*
- * Find second derivatives (x''(t_i),y''(t_i)) of cubic spline interpolation
- * through list of points (x_i,y_i). The parameter t is calculated as the
- * length of the linear stroke. The number of points must be at least 3.
- * Note: For CLOSED_CONTOURs the first and last point must be equal.
- */
- static int gen_cubic_spline(num_pts, p_cntr, d2x, d2y, delta_t, contr_kind, unit_x, unit_y)
- int num_pts; /* Number of points (num_pts>=3), input */
- struct cntr_struct *p_cntr; /* List of points (x(t_i),y(t_i)), input */
- double d2x[], d2y[], /* Second derivatives (x''(t_i),y''(t_i)), output */
- delta_t[]; /* List of interval lengths t_{i+1}-t_{i}, output */
- int contr_kind; /* CLOSED_CONTOUR or OPEN_CONTOUR, input */
- double unit_x, unit_y; /* Unit length in x and y (norm=1), input */
- {
- int n, i;
- double norm;
- tri_diag *m; /* The tri-diagonal matrix is saved here. */
- struct cntr_struct *pc_temp;
-
- m = (tri_diag *)
- gp_alloc((unsigned long) (sizeof(tri_diag) * num_pts), "contour tridiag m");
-
- /*
- * Calculate first differences in (d2x[i], d2y[i]) and interval lengths
- * in delta_t[i]:
- */
- pc_temp = p_cntr;
- for (i = 0; i < num_pts - 1; i++) {
- d2x[i] = pc_temp->next->X - pc_temp->X;
- d2y[i] = pc_temp->next->Y - pc_temp->Y;
- /*
- * The Norm of a linear stroke is calculated in "normal coordinates"
- * and used as interval length:
- */
- delta_t[i] = sqrt(SQR(d2x[i] / unit_x) + SQR(d2y[i] / unit_y));
-
- d2x[i] /= delta_t[i]; /* first difference, with unit norm: */
- d2y[i] /= delta_t[i]; /* || (d2x[i], d2y[i]) || = 1 */
-
- pc_temp = pc_temp->next;
- }
-
- /*
- * Setup linear System: M * x = b
- */
- n = num_pts - 2; /* Without first and last point */
- if (contr_kind == CLOSED_CONTOUR) {
- /* First and last points must be equal for CLOSED_CONTOURs */
- delta_t[num_pts - 1] = delta_t[0];
- d2x[num_pts - 1] = d2x[0];
- d2y[num_pts - 1] = d2y[0];
- n++; /* Add last point (= first point) */
- }
- for (i = 0; i < n; i++) {
- /* Matrix M, mainly tridiagonal with cyclic second index ("j = j+n mod n") */
- m[i][0] = delta_t[i]; /* Off-diagonal element M_{i,i-1} */
- m[i][1] = 2. * (delta_t[i] + delta_t[i + 1]); /* M_{i,i} */
- m[i][2] = delta_t[i + 1]; /* Off-diagonal element M_{i,i+1} */
-
- /* Right side b_x and b_y */
- d2x[i] = (d2x[i + 1] - d2x[i]) * 6.;
- d2y[i] = (d2y[i + 1] - d2y[i]) * 6.;
-
- /*
- * If the linear stroke shows a cusps of more than 90 degree, the right
- * side is reduced to avoid oscillations in the spline:
- */
- norm = sqrt(SQR(d2x[i] / unit_x) + SQR(d2y[i] / unit_y)) / 8.5;
-
- if (norm > 1.) {
- d2x[i] /= norm;
- d2y[i] /= norm;
- /* The first derivative will not be continuous */
- }
- }
-
- if (contr_kind != CLOSED_CONTOUR) {
- /* Third derivative is set to zero at both ends */
- m[0][1] += m[0][0]; /* M_{0,0} */
- m[0][0] = 0.; /* M_{0,n-1} */
- m[n - 1][1] += m[n - 1][2]; /* M_{n-1,n-1} */
- m[n - 1][2] = 0.; /* M_{n-1,0} */
- }
- /* Solve linear systems for d2x[] and d2y[] */
-
-
- if (solve_cubic_1(m, n)) { /* Calculate Cholesky decomposition */
- solve_cubic_2(m, d2x, n); /* solve M * d2x = b_x */
- solve_cubic_2(m, d2y, n); /* solve M * d2y = b_y */
-
- } else { /* Should not happen, but who knows ... */
- free((char *) m);
- return FALSE;
- }
-
- /* Shift all second derivatives one place right and abdate end points */
- for (i = n; i > 0; i--) {
- d2x[i] = d2x[i - 1];
- d2y[i] = d2y[i - 1];
- }
- if (contr_kind == CLOSED_CONTOUR) {
- d2x[0] = d2x[n];
- d2y[0] = d2y[n];
- } else {
- d2x[0] = d2x[1]; /* Third derivative is zero in */
- d2y[0] = d2y[1]; /* first and last interval */
- d2x[n + 1] = d2x[n];
- d2y[n + 1] = d2y[n];
- }
-
- free((char *) m);
- return TRUE;
- }
-
- /*
- * Calculate interpolated values of the spline function (defined via p_cntr
- * and the second derivatives d2x[] and d2y[]). The number of tabulated
- * values is n. On an equidistant grid n_intpol values are calculated.
- */
- static void intp_cubic_spline(n, p_cntr, d2x, d2y, delta_t, n_intpol)
- int n;
- struct cntr_struct *p_cntr;
- double d2x[], d2y[], delta_t[];
- int n_intpol;
- {
- double t, t_skip, t_max;
- double x0, x1, x, y0, y1, y;
- double d, hx, dx0, dx01, hy, dy0, dy01;
- int i;
-
- /* The length of the total interval */
- t_max = 0.;
- for (i = 0; i < n - 1; i++)
- t_max += delta_t[i];
-
- /* The distance between interpolated points */
- t_skip = (1. - 1e-7) * t_max / (n_intpol - 1);
-
- t = 0.; /* Parameter value */
- x1 = p_cntr->X;
- y1 = p_cntr->Y;
- add_cntr_point(x1, y1); /* First point. */
- t += t_skip;
-
- for (i = 0; i < n - 1; i++) {
- p_cntr = p_cntr->next;
-
- d = delta_t[i]; /* Interval length */
- x0 = x1;
- y0 = y1;
- x1 = p_cntr->X;
- y1 = p_cntr->Y;
- hx = (x1 - x0) / d;
- hy = (y1 - y0) / d;
- dx0 = (d2x[i + 1] + 2 * d2x[i]) / 6.;
- dy0 = (d2y[i + 1] + 2 * d2y[i]) / 6.;
- dx01 = (d2x[i + 1] - d2x[i]) / (6. * d);
- dy01 = (d2y[i + 1] - d2y[i]) / (6. * d);
- while (t <= delta_t[i]) { /* t in current interval ? */
- x = x0 + t * (hx + (t - d) * (dx0 + t * dx01));
- y = y0 + t * (hy + (t - d) * (dy0 + t * dy01));
- add_cntr_point(x, y); /* next point. */
- t += t_skip;
- }
- t -= delta_t[i]; /* Parameter t relative to start of next interval */
- }
- }
-
- /*
- * The following two procedures solve the special linear system which arise
- * in cubic spline interpolation. If x is assumed cyclic ( x[i]=x[n+i] ) the
- * equations can be written as (i=0,1,...,n-1):
- * m[i][0] * x[i-1] + m[i][1] * x[i] + m[i][2] * x[i+1] = b[i] .
- * In matrix notation one gets M * x = b, where the matrix M is tridiagonal
- * with additional elements in the upper right and lower left position:
- * m[i][0] = M_{i,i-1} for i=1,2,...,n-1 and m[0][0] = M_{0,n-1} ,
- * m[i][1] = M_{i, i } for i=0,1,...,n-1
- * m[i][2] = M_{i,i+1} for i=0,1,...,n-2 and m[n-1][2] = M_{n-1,0}.
- * M should be symmetric (m[i+1][0]=m[i][2]) and positiv definite.
- * The size of the system is given in n (n>=1).
- *
- * In the first procedure the Cholesky decomposition M = C^T * D * C
- * (C is upper triangle with unit diagonal, D is diagonal) is calculated.
- * Return TRUE if decomposition exist.
- */
- static int solve_cubic_1(m, n)
- tri_diag m[];
- int n;
- {
- int i;
- double m_ij, m_n, m_nn, d;
-
- if (n < 1)
- return FALSE; /* Dimension should be at least 1 */
-
- d = m[0][1]; /* D_{0,0} = M_{0,0} */
- if (d <= 0.)
- return FALSE; /* M (or D) should be positiv definite */
- m_n = m[0][0]; /* M_{0,n-1} */
- m_nn = m[n - 1][1]; /* M_{n-1,n-1} */
- for (i = 0; i < n - 2; i++) {
- m_ij = m[i][2]; /* M_{i,1} */
- m[i][2] = m_ij / d; /* C_{i,i+1} */
- m[i][0] = m_n / d; /* C_{i,n-1} */
- m_nn -= m[i][0] * m_n; /* to get C_{n-1,n-1} */
- m_n = -m[i][2] * m_n; /* to get C_{i+1,n-1} */
- d = m[i + 1][1] - m[i][2] * m_ij; /* D_{i+1,i+1} */
- if (d <= 0.)
- return FALSE; /* Elements of D should be positiv */
- m[i + 1][1] = d;
- }
- if (n >= 2) { /* Complete last column */
- m_n += m[n - 2][2]; /* add M_{n-2,n-1} */
- m[n - 2][0] = m_n / d; /* C_{n-2,n-1} */
- m[n - 1][1] = d = m_nn - m[n - 2][0] * m_n; /* D_{n-1,n-1} */
- if (d <= 0.)
- return FALSE;
- }
- return TRUE;
- }
-
- /*
- * The second procedure solves the linear system, with the Choleky
- * decomposition calculated above (in m[][]) and the right side b given
- * in x[]. The solution x overwrites the right side in x[].
- */
- static void solve_cubic_2(m, x, n)
- tri_diag m[];
- double x[];
- int n;
- {
- int i;
- double x_n;
-
- /* Division by transpose of C : b = C^{-T} * b */
- x_n = x[n - 1];
- for (i = 0; i < n - 2; i++) {
- x[i + 1] -= m[i][2] * x[i]; /* C_{i,i+1} * x_{i} */
- x_n -= m[i][0] * x[i]; /* C_{i,n-1} * x_{i} */
- }
- if (n >= 2)
- x[n - 1] = x_n - m[n - 2][0] * x[n - 2]; /* C_{n-2,n-1} * x_{n-1} */
-
- /* Division by D: b = D^{-1} * b */
- for (i = 0; i < n; i++)
- x[i] /= m[i][1];
-
- /* Division by C: b = C^{-1} * b */
- x_n = x[n - 1];
- if (n >= 2)
- x[n - 2] -= m[n - 2][0] * x_n; /* C_{n-2,n-1} * x_{n-1} */
- for (i = n - 3; i >= 0; i--) {
- /* C_{i,i+1} * x_{i+1} + C_{i,n-1} * x_{n-1} */
- x[i] -= m[i][2] * x[i + 1] + m[i][0] * x_n;
- }
- return;
- }
-
- /*
- * Solve tri diagonal linear system equation. The tri diagonal matrix is
- * defined via matrix M, right side is r, and solution X i.e. M * X = R.
- * Size of system given in n. Return TRUE if solution exist.
- */
- /* not used any more in "contour.c", but in "spline.c" (21. Dec. 1995) ! */
-
- int solve_tri_diag(m, r, x, n)
- tri_diag m[];
- double r[], x[];
- int n;
- {
- int i;
- double t;
-
- for (i = 1; i < n; i++) { /* Eliminate element m[i][i-1] (lower diagonal). */
- if (m[i - 1][1] == 0)
- return FALSE;
- t = m[i][0] / m[i - 1][1]; /* Find ratio between the two lines. */
- /* m[i][0] = m[i][0] - m[i-1][1] * t; */
- /* m[i][0] is not used any more (and set to 0 in the above line) */
- m[i][1] = m[i][1] - m[i - 1][2] * t;
- r[i] = r[i] - r[i - 1] * t;
- }
- /* Now do back subtitution - update the solution vector X: */
- if (m[n - 1][1] == 0)
- return FALSE;
- x[n - 1] = r[n - 1] / m[n - 1][1]; /* Find last element. */
- for (i = n - 2; i >= 0; i--) {
- if (m[i][1] == 0)
- return FALSE;
- x[i] = (r[i] - x[i + 1] * m[i][2]) / m[i][1];
- }
- return TRUE;
- }
-
- /*
- * Generate a Bspline curve defined by all the points given in linked list p:
- * Algorithm: using deBoor algorithm
- * Note: if Curvekind is OPEN_CONTOUR than Open end knot vector is assumed,
- * else (CLOSED_CONTOUR) Float end knot vector is assumed.
- * It is assumed that num_of_points is at least 2, and order of Bspline is less
- * than num_of_points!
- */
- static void gen_bspline_approx(p_cntr, num_of_points, order, contr_kind)
- struct cntr_struct *p_cntr;
- int num_of_points, order, contr_kind;
- {
- int knot_index = 0, pts_count = 1;
- double dt, t, next_t, t_min, t_max, x, y;
- struct cntr_struct *pc_temp = p_cntr, *pc_tail = NULL;
-
- /* If the contour is Closed one we must update few things:
- * 1. Make the list temporary circular, so we can close the contour.
- * 2. Update num_of_points - increase it by "order-1" so contour will be
- * closed. This will evaluate order more sections to close it!
- */
- if (contr_kind == CLOSED_CONTOUR) {
- pc_tail = p_cntr;
- while (pc_tail->next)
- pc_tail = pc_tail->next; /* Find last point. */
-
- /* test if first and last point are equal */
- if (fuzzy_equal(pc_tail, p_cntr)) {
- /* Close contour list - make it circular. */
- pc_tail->next = p_cntr->next;
- num_of_points += order - 1;
- } else {
- pc_tail->next = p_cntr;
- num_of_points += order;
- }
- }
- /* Find first (t_min) and last (t_max) t value to eval: */
- t = t_min = fetch_knot(contr_kind, num_of_points, order, order);
- t_max = fetch_knot(contr_kind, num_of_points, order, num_of_points);
- next_t = t_min + 1.0;
- knot_index = order;
- dt = 1.0 / num_approx_pts; /* Number of points per one section. */
-
-
- while (t < t_max) {
- if (t > next_t) {
- pc_temp = pc_temp->next; /* Next order ctrl. pt. to blend. */
- knot_index++;
- next_t += 1.0;
- }
- eval_bspline(t, pc_temp, num_of_points, order, knot_index,
- contr_kind, &x, &y); /* Next pt. */
- add_cntr_point(x, y);
- pts_count++;
- /* As we might have some real number round off problems we do */
- /* the last point outside the loop */
- if (pts_count == num_approx_pts * (num_of_points - order) + 1)
- break;
- t += dt;
- }
-
- /* Now do the last point */
- eval_bspline(t_max - EPSILON, pc_temp, num_of_points, order, knot_index,
- contr_kind, &x, &y);
- add_cntr_point(x, y); /* Complete the contour. */
-
- if (contr_kind == CLOSED_CONTOUR) /* Update list - un-circular it. */
- pc_tail->next = NULL;
- }
-
- /*
- * The routine to evaluate the B-spline value at point t using knot vector
- * from function fetch_knot(), and the control points p_cntr.
- * Returns (x, y) of approximated B-spline. Note that p_cntr points on the
- * first control point to blend with. The B-spline is of order order.
- */
- static void eval_bspline(t, p_cntr, num_of_points, order, j, contr_kind, x, y)
- double t;
- struct cntr_struct *p_cntr;
- int num_of_points, order, j, contr_kind;
- double *x, *y;
- {
- int i, p;
- double ti, tikp, *dx, *dy; /* Copy p_cntr into it to make it faster. */
-
- dx = (double *)
- gp_alloc((unsigned long) (sizeof(double) * (order + j)), "contour b_spline");
- dy = (double *)
- gp_alloc((unsigned long) (sizeof(double) * (order + j)), "contour b_spline");
-
- /* Set the dx/dy - [0] iteration step, control points (p==0 iterat.): */
- for (i = j - order; i <= j; i++) {
- dx[i] = p_cntr->X;
- dy[i] = p_cntr->Y;
- p_cntr = p_cntr->next;
- }
-
- for (p = 1; p <= order; p++) { /* Iteration (b-spline level) counter. */
- for (i = j; i >= j - order + p; i--) { /* Control points indexing. */
- ti = fetch_knot(contr_kind, num_of_points, order, i);
- tikp = fetch_knot(contr_kind, num_of_points, order, i + order + 1 - p);
- if (ti == tikp) { /* Should not be a problems but how knows... */
- } else {
- dx[i] = dx[i] * (t - ti) / (tikp - ti) + /* Calculate x. */
- dx[i - 1] * (tikp - t) / (tikp - ti);
- dy[i] = dy[i] * (t - ti) / (tikp - ti) + /* Calculate y. */
- dy[i - 1] * (tikp - t) / (tikp - ti);
- }
- }
- }
- *x = dx[j];
- *y = dy[j];
- free((char *) dx);
- free((char *) dy);
- }
-
- /*
- * Routine to get the i knot from uniform knot vector. The knot vector
- * might be float (Knot(i) = i) or open (where the first and last "order"
- * knots are equal). contr_kind determines knot kind - OPEN_CONTOUR means
- * open knot vector, and CLOSED_CONTOUR selects float knot vector.
- * Note the knot vector is not exist and this routine simulates it existance
- * Also note the indexes for the knot vector starts from 0.
- */
- static double fetch_knot(contr_kind, num_of_points, order, i)
- int contr_kind, num_of_points, order, i;
- {
- switch (contr_kind) {
- case OPEN_CONTOUR:
- if (i <= order)
- return 0.0;
- else if (i <= num_of_points)
- return (double) (i - order);
- else
- return (double) (num_of_points - order);
- case CLOSED_CONTOUR:
- return (double) i;
- default: /* Should never happen */
- return 1.0;
- }
- #ifdef sequent
- return 1.0; /* ???? */
- #endif
- }
-